Reducing the metal-graphene contact resistance through laser-induced defects

Auteurs : Vikas Jangra, Satender Kataria, Max C. Lemme

arXiv: 2402.07151v1 - DOI (physics.app-ph)
30 pages

Résumé : Graphene has been extensively studied for a variety of electronic and optoelectronic applications. The reported contact resistance between metal and graphene, or rather its specific contact resistance (R{_C}), ranges from a few tens of {\Omega} {\mu}m up to a few k{\Omega} {\mu}m. Manufacturable solutions for defining ohmic contacts to graphene remain a subject of research. Here, we report a scalable method based on laser irradiation of graphene to reduce the R{_C} in nickel-contacted devices. A laser with a wavelength of {\lambda} = 532 nm is used to induce defects at the contact regions, which are monitored \textit{in-situ} using micro-Raman spectroscopy. Physical damage is observed using \textit{ex-situ} atomic force and scanning electron microscopy. The transfer line method (TLM) is used to extract R{_C} from back-gated graphene devices with and without laser treatment under ambient and vacuum conditions. A significant reduction in R{_C} is observed in devices where the contacts are laser irradiated, which scales with the laser power. The lowest R{_C} of about 250 {\Omega} {\mu}m is obtained for the devices irradiated with a laser power of 20 mW, compared to 900 {\Omega} {\mu}m for the untreated devices. The reduction is attributed to an increase in defect density, which leads to the formation of crystallite edges and in-plane dangling bonds that enhance the injection of charge carriers from the metal into the graphene. Our work suggests laser irradiation as a scalable technology for R{_C} reduction in graphene and potentially other two-dimensional materials.

Soumis à arXiv le 11 Fév. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.