A quantum semantic framework for natural language processing
Authors: Christopher J. Agostino, Quan Le Thien, Molly Apsel, Denizhan Pak, Elina Lesyk, Ashabari Majumdar
Abstract: Semantic degeneracy represents a fundamental property of natural language that extends beyond simple polysemy to encompass the combinatorial explosion of potential interpretations that emerges as semantic expressions increase in complexity. In this work, we argue this property imposes fundamental limitations on Large Language Models (LLMs) and other modern NLP systems, precisely because they operate within natural language itself. Using Kolmogorov complexity, we demonstrate that as an expression's complexity grows, the amount of contextual information required to reliably resolve its ambiguity explodes combinatorially. The computational intractability of recovering a single intended meaning for complex or ambiguous text therefore suggests that the classical view that linguistic forms possess intrinsic meaning in and of themselves is conceptually inadequate. We argue instead that meaning is dynamically actualized through an observer-dependent interpretive act, a process whose non-deterministic nature is most appropriately described by a non-classical, quantum-like logic. To test this hypothesis, we conducted a semantic Bell inequality test using diverse LLM agents. Our experiments yielded average CHSH expectation values from 1.2 to 2.8, with several runs producing values (e.g., 2.3-2.4) in significant violation of the classical boundary ($|S|\leq2$), demonstrating that linguistic interpretation under ambiguity can exhibit non-classical contextuality, consistent with results from human cognition experiments. These results inherently imply that classical frequentist-based analytical approaches for natural language are necessarily lossy. Instead, we propose that Bayesian-style repeated sampling approaches can provide more practically useful and appropriate characterizations of linguistic meaning in context.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.