Limitations of Amplitude Encoding on Quantum Classification
Authors: Xin Wang, Yabo Wang, Bo Qi, Rebing Wu
Abstract: It remains unclear whether quantum machine learning (QML) has real advantages when dealing with practical and meaningful tasks. Encoding classical data into quantum states is one of the key steps in QML. Amplitude encoding has been widely used owing to its remarkable efficiency in encoding a number of $2^{n}$ classical data into $n$ qubits simultaneously. However, the theoretical impact of amplitude encoding on QML has not been thoroughly investigated. In this work we prove that under some broad and typical data assumptions, the average of encoded quantum states via amplitude encoding tends to concentrate towards a specific state. This concentration phenomenon severely constrains the capability of quantum classifiers as it leads to a loss barrier phenomenon, namely, the loss function has a lower bound that cannot be improved by any optimization algorithm. In addition, via numerical simulations, we reveal a counterintuitive phenomenon of amplitude encoding: as the amount of training data increases, the training error may increase rather than decrease, leading to reduced decrease in prediction accuracy on new data. Our results highlight the limitations of amplitude encoding in QML and indicate that more efforts should be devoted to finding more efficient encoding strategies to unlock the full potential of QML.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.