Can Large Language Models Make the Grade? An Empirical Study Evaluating LLMs Ability to Mark Short Answer Questions in K-12 Education

Authors: Owen Henkel, Adam Boxer, Libby Hills, Bill Roberts

License: CC BY 4.0

Abstract: This paper presents reports on a series of experiments with a novel dataset evaluating how well Large Language Models (LLMs) can mark (i.e. grade) open text responses to short answer questions, Specifically, we explore how well different combinations of GPT version and prompt engineering strategies performed at marking real student answers to short answer across different domain areas (Science and History) and grade-levels (spanning ages 5-16) using a new, never-used-before dataset from Carousel, a quizzing platform. We found that GPT-4, with basic few-shot prompting performed well (Kappa, 0.70) and, importantly, very close to human-level performance (0.75). This research builds on prior findings that GPT-4 could reliably score short answer reading comprehension questions at a performance-level very close to that of expert human raters. The proximity to human-level performance, across a variety of subjects and grade levels suggests that LLMs could be a valuable tool for supporting low-stakes formative assessment tasks in K-12 education and has important implications for real-world education delivery.

Submitted to arXiv on 05 May. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.