Overconfident and Unconfident AI Hinder Human-AI Collaboration
Authors: Jingshu Li, Yitian Yang, Renwen Zhang, Yi-chieh Lee
Abstract: AI transparency is a central pillar of responsible AI deployment and effective human-AI collaboration. A critical approach is communicating uncertainty, such as displaying AI's confidence level, or its correctness likelihood (CL), to users. However, these confidence levels are often uncalibrated, either overestimating or underestimating actual CL, posing risks and harms to human-AI collaboration. This study examines the effects of uncalibrated AI confidence on users' trust in AI, AI advice adoption, and collaboration outcomes. We further examined the impact of increased transparency, achieved through trust calibration support, on these outcomes. Our results reveal that uncalibrated AI confidence leads to both the misuse of overconfident AI and disuse of unconfident AI, thereby hindering outcomes of human-AI collaboration. Deficiency of trust calibration support exacerbates this issue by making it harder to detect uncalibrated confidence, promoting misuse and disuse of AI. Conversely, trust calibration support aids in recognizing uncalibration and reducing misuse, but it also fosters distrust and causes disuse of AI. Our findings highlight the importance of AI confidence calibration for enhancing human-AI collaboration and suggest directions for AI design and regulation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.