Defending Against Alignment-Breaking Attacks via Robustly Aligned LLM

Authors: Bochuan Cao, Yuanpu Cao, Lu Lin, Jinghui Chen

16 Pages, 5 Figures, 3 Tables

Abstract: Recently, Large Language Models (LLMs) have made significant advancements and are now widely used across various domains. Unfortunately, there has been a rising concern that LLMs can be misused to generate harmful or malicious content. Though a line of research has focused on aligning LLMs with human values and preventing them from producing inappropriate content, such alignments are usually vulnerable and can be bypassed by alignment-breaking attacks via adversarially optimized or handcrafted jailbreaking prompts. In this work, we introduce a Robustly Aligned LLM (RA-LLM) to defend against potential alignment-breaking attacks. RA-LLM can be directly constructed upon an existing aligned LLM with a robust alignment checking function, without requiring any expensive retraining or fine-tuning process of the original LLM. Furthermore, we also provide a theoretical analysis for RA-LLM to verify its effectiveness in defending against alignment-breaking attacks. Through real-world experiments on open-source large language models, we demonstrate that RA-LLM can successfully defend against both state-of-the-art adversarial prompts and popular handcrafted jailbreaking prompts by reducing their attack success rates from nearly 100\% to around 10\% or less.

Submitted to arXiv on 18 Sep. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.