A decision-tree framework to select optimal box-sizes for product shipments
Authors: Karthik S. Gurumoorthy, Abhiraj Hinge
Abstract: In package-handling facilities, boxes of varying sizes are used to ship products. Improperly sized boxes with box dimensions much larger than the product dimensions create wastage and unduly increase the shipping costs. Since it is infeasible to make unique, tailor-made boxes for each of the $N$ products, the fundamental question that confronts e-commerce companies is: How many $K << N$ cuboidal boxes need to manufactured and what should be their dimensions? In this paper, we propose a solution for the single-count shipment containing one product per box in two steps: (i) reduce it to a clustering problem in the $3$ dimensional space of length, width and height where each cluster corresponds to the group of products that will be shipped in a particular size variant, and (ii) present an efficient forward-backward decision tree based clustering method with low computational complexity on $N$ and $K$ to obtain these $K$ clusters and corresponding box dimensions. Our algorithm has multiple constituent parts, each specifically designed to achieve a high-quality clustering solution. As our method generates clusters in an incremental fashion without discarding the present solution, adding or deleting a size variant is as simple as stopping the backward pass early or executing it for one more iteration. We tested the efficacy of our approach by simulating actual single-count shipments that were transported during a month by Amazon using the proposed box dimensions. Even by just modifying the existing box dimensions and not adding a new size variant, we achieved a reduction of $4.4\%$ in the shipment volume, contributing to the decrease in non-utilized, air volume space by $2.2\%$. The reduction in shipment volume and air volume improved significantly to $10.3\%$ and $6.1\%$ when we introduced $4$ additional boxes.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.