An Empirical Investigation of Personalization Factors on TikTok

Authors: Maximilian Boeker, Aleksandra Urman

Accepted for publication at the Web Conference 2022
License: CC BY 4.0

Abstract: TikTok currently is the fastest growing social media platform with over 1 billion active monthly users of which the majority is from generation Z. Arguably, its most important success driver is its recommendation system. Despite the importance of TikTok's algorithm to the platform's success and content distribution, little work has been done on the empirical analysis of the algorithm. Our work lays the foundation to fill this research gap. Using a sock-puppet audit methodology with a custom algorithm developed by us, we tested and analysed the effect of the language and location used to access TikTok, follow- and like-feature, as well as how the recommended content changes as a user watches certain posts longer than others. We provide evidence that all the tested factors influence the content recommended to TikTok users. Further, we identified that the follow-feature has the strongest influence, followed by the like-feature and video view rate. We also discuss the implications of our findings in the context of the formation of filter bubbles on TikTok and the proliferation of problematic content.

Submitted to arXiv on 28 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.