True Few-Shot Learning with Prompts -- A Real-World Perspective

Authors: Timo Schick, Hinrich Schütze

Abstract: Prompt-based approaches are strong at few-shot learning. However, Perez et al. (2021) have recently cast doubt on their performance because they had difficulty getting good results in a "true" few-shot setting in which prompts and hyperparameters cannot be tuned on a dev set. In view of this, we conduct an extensive study of PET, a method that combines textual instructions with example-based finetuning. We show that, if correctly configured, PET performs strongly in a true few-shot setting, i.e., without a dev set. Crucial for this strong performance is PET's ability to intelligently handle multiple prompts. We then put our findings to a real-world test by running PET on RAFT, a benchmark of tasks taken directly from realistic NLP applications for which no labeled dev or test sets are available. PET achieves a new state of the art on RAFT and performs close to non-expert humans for 7 out of 11 tasks. These results demonstrate that prompt-based learners like PET excel at true few-shot learning and underpin our belief that learning from instructions will play an important role on the path towards human-like few-shot learning capabilities.

Submitted to arXiv on 26 Nov. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.