Learning to Prompt for Vision-Language Models
Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu
Abstract: Vision-language pre-training has recently emerged as a promising alternative for representation learning. It shifts from the tradition of using images and discrete labels for learning a fixed set of weights, seen as visual concepts, to aligning images and raw text for two separate encoders. Such a paradigm benefits from a broader source of supervision and allows zero-shot transfer to downstream tasks since visual concepts can be diametrically generated from natural language, known as prompt. In this paper, we identify that a major challenge of deploying such models in practice is prompt engineering. This is because designing a proper prompt, especially for context words surrounding a class name, requires domain expertise and typically takes a significant amount of time for words tuning since a slight change in wording could have a huge impact on performance. Moreover, different downstream tasks require specific designs, further hampering the efficiency of deployment. To overcome this challenge, we propose a novel approach named context optimization (CoOp). The main idea is to model context in prompts using continuous representations and perform end-to-end learning from data while keeping the pre-trained parameters fixed. In this way, the design of task-relevant prompts can be fully automated. Experiments on 11 datasets show that CoOp effectively turns pre-trained vision-language models into data-efficient visual learners, requiring as few as one or two shots to beat hand-crafted prompts with a decent margin and able to gain significant improvements when using more shots (e.g., at 16 shots the average gain is around 17% with the highest reaching over 50%). CoOp also exhibits strong robustness to distribution shift.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.