Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections, Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey
Authors: Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley
Abstract: This is a tutorial and survey paper on the Johnson-Lindenstrauss (JL) lemma and linear and nonlinear random projections. We start with linear random projection and then justify its correctness by JL lemma and its proof. Then, sparse random projections with $\ell_1$ norm and interpolation norm are introduced. Two main applications of random projection, which are low-rank matrix approximation and approximate nearest neighbor search by random projection onto hypercube, are explained. Random Fourier Features (RFF) and Random Kitchen Sinks (RKS) are explained as methods for nonlinear random projection. Some other methods for nonlinear random projection, including extreme learning machine, randomly weighted neural networks, and ensemble of random projections, are also introduced.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.