Times Series Forecasting for Urban Building Energy Consumption Based on Graph Convolutional Network

Authors: Yuqing Hu, Xiaoyuan Cheng, Suhang Wang, Jianli Chen, Tianxiang Zhao, Enyan Dai

22 pages, 10 figures, submitted to applied energy

Abstract: The world is increasingly urbanizing and the building industry accounts for more than 40% of energy consumption in the United States. To improve urban sustainability, many cities adopt ambitious energy-saving strategies through retrofitting existing buildings and constructing new communities. In this situation, an accurate urban building energy model (UBEM) is the foundation to support the design of energy-efficient communities. However, current UBEM are limited in their abilities to capture the inter-building interdependency due to their dynamic and non-linear characteristics. Those models either ignored or oversimplified these building interdependencies, which can substantially affect the accuracy of urban energy modeling. To fill the research gap, this study proposes a novel data-driven UBEM synthesizing the solar-based building interdependency and spatial-temporal graph convolutional network (ST-GCN) algorithm. Especially, we took a university campus located in downtown Atlanta as an example to predict the hourly energy consumption. Furthermore, we tested the feasibility of the proposed model by comparing the performance of the ST-GCN model with other common time-series machine learning models. The results indicate that the ST-GCN model overall outperforms all others. In addition, the physical knowledge embedded in the model is well interpreted. After discussion, it is found that data-driven models integrated engineering or physical knowledge can significantly improve the urban building energy simulation.

Submitted to arXiv on 27 May. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.