Cosmic Velocity Field Reconstruction Using AI

Authors: Ziyong Wu, Zhenyu Zhang, Shuyang Pan, Haitao Miao, Xin Wang, Cristiano G. Sabiu, Jaime Forero-Romero, Yang Wang, Xiao-Dong Li

ApJ, 913, 2 (2021)
arXiv: 2105.09450v1 - DOI (astro-ph.CO)
10 pages, 6 figures, 4 tables, accepted for publication in ApJ
License: CC BY 4.0

Abstract: We develop a deep learning technique to infer the non-linear velocity field from the dark matter density field. The deep learning architecture we use is an "U-net" style convolutional neural network, which consists of 15 convolution layers and 2 deconvolution layers. This setup maps the 3-dimensional density field of $32^3$-voxels to the 3-dimensional velocity or momentum fields of $20^3$-voxels. Through the analysis of the dark matter simulation with a resolution of $2 {h^{-1}}{\rm Mpc}$, we find that the network can predict the the non-linearity, complexity and vorticity of the velocity and momentum fields, as well as the power spectra of their value, divergence and vorticity and its prediction accuracy reaches the range of $k\simeq1.4$ $h{\rm Mpc}^{-1}$ with a relative error ranging from 1% to $\lesssim$10%. A simple comparison shows that neural networks may have an overwhelming advantage over perturbation theory in the reconstruction of velocity or momentum fields.

Submitted to arXiv on 20 May. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.