Kidney Recognition in CT Using YOLOv3

Authors: Andréanne Lemay

Abstract: Organ localization can be challenging considering the heterogeneity of medical images and the biological diversity from one individual to another. The contribution of this paper is to overview the performance of the object detection model, YOLOv3, on kidney localization in 2D and in 3D from CT scans. The model obtained a 0.851 Dice score in 2D and 0.742 in 3D. The SSD, a similar state-of-the-art object detection model, showed similar scores on the test set. YOLOv3 and SSD demonstrated the ability to detect kidneys on a wide variety of CT scans including patients suffering from different renal conditions.

Submitted to arXiv on 03 Oct. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.