SoK: Applying Machine Learning in Security - A Survey

Authors: Heju Jiang, Jasvir Nagra, Parvez Ahammad

18 pages, 2 figures, 11 tables

Abstract: The idea of applying machine learning(ML) to solve problems in security domains is almost 3 decades old. As information and communications grow more ubiquitous and more data become available, many security risks arise as well as appetite to manage and mitigate such risks. Consequently, research on applying and designing ML algorithms and systems for security has grown fast, ranging from intrusion detection systems(IDS) and malware classification to security policy management(SPM) and information leak checking. In this paper, we systematically study the methods, algorithms, and system designs in academic publications from 2008-2015 that applied ML in security domains. 98 percent of the surveyed papers appeared in the 6 highest-ranked academic security conferences and 1 conference known for pioneering ML applications in security. We examine the generalized system designs, underlying assumptions, measurements, and use cases in active research. Our examinations lead to 1) a taxonomy on ML paradigms and security domains for future exploration and exploitation, and 2) an agenda detailing open and upcoming challenges. Based on our survey, we also suggest a point of view that treats security as a game theory problem instead of a batch-trained ML problem.

Submitted to arXiv on 10 Nov. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.