The Gauss-Bonnet Theorem for the noncommutative two torus

Authors: Alain Connes, Paula Tretkoff

arXiv: 0910.0188v1 - DOI (math.QA)
17 pages, 1 Figure

Abstract: In this paper we show that the value at zero of the zeta function of the Laplacian on the non-commutative two torus, endowed with its canonical conformal structure, is independent of the choice of the volume element (Weyl factor) given by a (non-unimodular) state. We had obtained, in the late eighties, in an unpublished computation, a general formula for this value at zero involving modified logarithms of the modular operator of the state. We give here the detailed computation and prove that the result is independent of the Weyl factor as in the classical case, thus proving the analogue of the Gauss-Bonnet theorem for the noncommutative two torus.

Submitted to arXiv on 01 Oct. 2009

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.