Parametrized braid groups of Chevalley groups

Auteurs : Jean-Louis Loday, Michael R. Stein

Documenta Mathematica 10 (2005), 391--416.
28 pages

Résumé : We introduce the notion of a braid group parametrized by a ring, which is defined by generators and relations and based on the geometric idea of painted braids. We show that the parametrized braid group is isomorphic to the semi-direct product of the Steinberg group (of the ring) with the classical braid group. The technical heart of the proof is the Pure Braid Lemma, which asserts that certain elements of the parametrized braid group commute with the pure braid group. More generally, we define, for any crystallographic root system, a braid group and a parametrized braid group with parameters in a commutative ring. The parametrized braid group is expected to be isomorphic to the semi-direct product of the corresponding Steinberg group with the braid group. The first part of the paper (described above) treats the case of the root system $A_n$; in the second part, we handle the root system {$D_n$}. Other cases will be treated in the sequel.

Soumis à arXiv le 16 Déc. 2002

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.