Generative AI for Stock Selection

Auteurs : Keywan Christian Rasekhschaffe

arXiv: 2602.00196v1 - DOI (q-fin.ST)

Résumé : We study whether generative AI can automate feature discovery in U.S. equities. Using large language models with retrieval-augmented generation and structured/programmatic prompting, we synthesize economically motivated features from analyst, options, and price-volume data. These features are then used as inputs to a tabular machine-learning model to forecast short-horizon returns. Across multiple datasets, AI-generated features are consistently competitive with baselines, with Sharpe improvements ranging from 14% to 91% depending on dataset and configuration. Retrieval quality is pivotal: better knowledge bases materially improve outcomes. The AI-generated signals are weakly correlated with traditional features, supporting combination. Overall, generative AI can meaningfully augment feature discovery when retrieval quality is controlled, producing interpretable signals while reducing manual engineering effort.

Soumis à arXiv le 30 Jan. 2026

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.