A Dynamics-Informed Gaussian Process Framework for 2D Stochastic Navier-Stokes via Quasi-Gaussianity

Auteurs : Boumediene Hamzi, Houman Owhadi

Licence : CC BY 4.0

Résumé : The recent proof of quasi-Gaussianity for the 2D stochastic Navier--Stokes (SNS) equations by Coe, Hairer, and Tolomeo establishes that the system's unique invariant measure is equivalent (mutually absolutely continuous) to the Gaussian measure of its corresponding linear Ornstein--Uhlenbeck (OU) process. While Gaussian process (GP) frameworks are increasingly used for fluid dynamics, their priors are often chosen for convenience rather than being rigorously justified by the system's long-term dynamics. In this work, we bridge this gap by introducing a probabilistic framework for 2D SNS built directly upon this theoretical foundation. We construct our GP prior precisely from the stationary covariance of the linear OU model, which is explicitly defined by the forcing spectrum and dissipation. This provides a principled, GP prior with rigorous long-time dynamical justification for turbulent flows, bridging SPDE theory and practical data assimilation.

Soumis à arXiv le 26 Nov. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.