Fluid Intelligence: A Forward Look on AI Foundation Models in Computational Fluid Dynamics
Auteurs : Neil Ashton, Johannes Brandstetter, Siddhartha Mishra
Résumé : Driven by the advancement of GPUs and AI, the field of Computational Fluid Dynamics (CFD) is undergoing significant transformations. This paper bridges the gap between the machine learning and CFD communities by deconstructing industrial-scale CFD simulations into their core components. Our main contribution is to propose the first scaling law that incorporates CFD inputs for both data generation and model training to outline the unique challenges of developing and deploying these next-generation AI models for complex fluid dynamics problems. Using our new scaling law, we establish quantitative estimates for the large-scale limit, distinguishing between regimes where the cost of data generation is the dominant factor in total compute versus where the cost of model training prevails. We conclude that the incorporation of high-fidelity transient data provides the optimum route to a foundation model. We constrain our theory with concrete numbers, providing the first public estimates on the computational cost and time to build a foundation model for CFD.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.