Explicit and Effectively Symmetric Schemes for Neural SDEs
Auteurs : Daniil Shmelev, Cristopher Salvi
Résumé : Backpropagation through (neural) SDE solvers is traditionally approached in two ways: discretise-then-optimise, which offers accurate gradients but incurs prohibitive memory costs due to storing the full computational graph (even when mitigated by checkpointing); and optimise-then-discretise, which achieves constant memory cost by solving an auxiliary backward SDE, but suffers from slower evaluation and gradient approximation errors. Algebraically reversible solvers promise both memory efficiency and gradient accuracy, yet existing methods such as the Reversible Heun scheme are often unstable under complex models and large step sizes. We address these limitations by introducing a novel class of stable, near-reversible Runge--Kutta schemes for neural SDEs. These Explicit and Effectively Symmetric (EES) schemes retain the benefits of reversible solvers while overcoming their instability, enabling memory-efficient training without severe restrictions on step size or model complexity. Through numerical experiments, we demonstrate the superior stability and reliability of our schemes, establishing them as a practical foundation for scalable and accurate training of neural SDEs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.