ATLANTIS: AI-driven Threat Localization, Analysis, and Triage Intelligence System

Auteurs : Taesoo Kim, HyungSeok Han, Soyeon Park, Dae R. Jeong, Dohyeok Kim, Dongkwan Kim, Eunsoo Kim, Jiho Kim, Joshua Wang, Kangsu Kim, Sangwoo Ji, Woosun Song, Hanqing Zhao, Andrew Chin, Gyejin Lee, Kevin Stevens, Mansour Alharthi, Yizhuo Zhai, Cen Zhang, Joonun Jang, Yeongjin Jang, Ammar Askar, Dongju Kim, Fabian Fleischer, Jeongin Cho, Junsik Kim, Kyungjoon Ko, Insu Yun, Sangdon Park, Dowoo Baik, Haein Lee, Hyeon Heo, Minjae Gwon, Minjae Lee, Minwoo Baek, Seunggi Min, Wonyoung Kim, Yonghwi Jin, Younggi Park, Yunjae Choi, Jinho Jung, Gwanhyun Lee, Junyoung Jang, Kyuheon Kim, Yeonghyeon Cha, Youngjoon Kim

Version 1.0 (September 17, 2025). Technical Report. Team Atlanta -- 1st place in DARPA AIxCC Final Competition. Project page: https://team-atlanta.github.io/
Licence : CC BY 4.0

Résumé : We present ATLANTIS, the cyber reasoning system developed by Team Atlanta that won 1st place in the Final Competition of DARPA's AI Cyber Challenge (AIxCC) at DEF CON 33 (August 2025). AIxCC (2023-2025) challenged teams to build autonomous cyber reasoning systems capable of discovering and patching vulnerabilities at the speed and scale of modern software. ATLANTIS integrates large language models (LLMs) with program analysis -- combining symbolic execution, directed fuzzing, and static analysis -- to address limitations in automated vulnerability discovery and program repair. Developed by researchers at Georgia Institute of Technology, Samsung Research, KAIST, and POSTECH, the system addresses core challenges: scaling across diverse codebases from C to Java, achieving high precision while maintaining broad coverage, and producing semantically correct patches that preserve intended behavior. We detail the design philosophy, architectural decisions, and implementation strategies behind ATLANTIS, share lessons learned from pushing the boundaries of automated security when program analysis meets modern AI, and release artifacts to support reproducibility and future research.

Soumis à arXiv le 18 Sep. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.