AI in Mental Health: Emotional and Sentiment Analysis of Large Language Models' Responses to Depression, Anxiety, and Stress Queries

Auteurs : Arya VarastehNezhad, Reza Tavasoli, Soroush Elyasi, MohammadHossein LotfiNia, Hamed Farbeh

Licence : CC BY 4.0

Résumé : Depression, anxiety, and stress are widespread mental health concerns that increasingly drive individuals to seek information from Large Language Models (LLMs). This study investigates how eight LLMs (Claude Sonnet, Copilot, Gemini Pro, GPT-4o, GPT-4o mini, Llama, Mixtral, and Perplexity) reply to twenty pragmatic questions about depression, anxiety, and stress when those questions are framed for six user profiles (baseline, woman, man, young, old, and university student). The models generated 2,880 answers, which we scored for sentiment and emotions using state-of-the-art tools. Our analysis revealed that optimism, fear, and sadness dominated the emotional landscape across all outputs, with neutral sentiment maintaining consistently high values. Gratitude, joy, and trust appeared at moderate levels, while emotions such as anger, disgust, and love were rarely expressed. The choice of LLM significantly influenced emotional expression patterns. Mixtral exhibited the highest levels of negative emotions including disapproval, annoyance, and sadness, while Llama demonstrated the most optimistic and joyful responses. The type of mental health condition dramatically shaped emotional responses: anxiety prompts elicited extraordinarily high fear scores (0.974), depression prompts generated elevated sadness (0.686) and the highest negative sentiment, while stress-related queries produced the most optimistic responses (0.755) with elevated joy and trust. In contrast, demographic framing of queries produced only marginal variations in emotional tone. Statistical analyses confirmed significant model-specific and condition-specific differences, while demographic influences remained minimal. These findings highlight the critical importance of model selection in mental health applications, as each LLM exhibits a distinct emotional signature that could significantly impact user experience and outcomes.

Soumis à arXiv le 15 Aoû. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.