MagicVL-2B: Empowering Vision-Language Models on Mobile Devices with Lightweight Visual Encoders via Curriculum Learning

Auteurs : Yi Liu, Xiao Xu, Zeyu Xu, Meng Zhang, Yibo Li, Haoyu Chen, Junkang Zhang, Qiang Wang, Jifa Sun, Siling Lin, Shengxun Cheng, Lingshu Zhang, Kang Wang

Résumé : Vision-Language Models (VLMs) have achieved remarkable breakthroughs in recent years, enabling a diverse array of applications in everyday life. However, the substantial computational and storage demands of VLMs pose significant challenges for their efficient deployment on mobile devices, which represent the most ubiquitous and accessible computing platforms today. In this work, we introduce MagicVL-2B, a novel VLM meticulously optimized for flagship smartphones. MagicVL-2B leverages a lightweight visual encoder with fewer than 100M parameters and features a redesigned dynamic resolution scheme that adaptively generates image tokens without excessive modification of image dimensions. To further enhance the performance of this compact encoder within VLMs, we propose a multimodal curriculum learning strategy that incrementally increases task difficulty and data information density throughout training. This approach substantially improves the model's performance across a variety of sub-tasks. Extensive evaluations on standard VLM benchmarks demonstrate that MagicVL-2B matches the accuracy of current state-of-the-art models while reducing on-device power consumption by 41.1%. These results establish MagicVL-2B as a practical and robust solution for real-world mobile vision-language applications, enabling advanced multimodal intelligence to run directly on smartphones.

Soumis à arXiv le 03 Aoû. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.