SETOL: A Semi-Empirical Theory of (Deep) Learning

Auteurs : Charles H Martin, Christopher Hinrichs

139 pages, 28 figures. Code for experiments available at https://github.com/charlesmartin14/SETOL_experiments
Licence : CC BY 4.0

Résumé : We present a SemiEmpirical Theory of Learning (SETOL) that explains the remarkable performance of State-Of-The-Art (SOTA) Neural Networks (NNs). We provide a formal explanation of the origin of the fundamental quantities in the phenomenological theory of Heavy-Tailed Self-Regularization (HTSR): the heavy-tailed power-law layer quality metrics, alpha and alpha-hat. In prior work, these metrics have been shown to predict trends in the test accuracies of pretrained SOTA NN models, importantly, without needing access to either testing or training data. Our SETOL uses techniques from statistical mechanics as well as advanced methods from random matrix theory and quantum chemistry. The derivation suggests new mathematical preconditions for ideal learning, including a new metric, ERG, which is equivalent to applying a single step of the Wilson Exact Renormalization Group. We test the assumptions and predictions of SETOL on a simple 3-layer multilayer perceptron (MLP), demonstrating excellent agreement with the key theoretical assumptions. For SOTA NN models, we show how to estimate the individual layer qualities of a trained NN by simply computing the empirical spectral density (ESD) of the layer weight matrices and plugging this ESD into our SETOL formulas. Notably, we examine the performance of the HTSR alpha and the SETOL ERG layer quality metrics, and find that they align remarkably well, both on our MLP and on SOTA NNs.

Soumis à arXiv le 23 Jul. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.