Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems

Auteurs : Dany Moshkovich, Sergey Zeltyn

Résumé : Large Language Models (LLMs) are increasingly deployed within agentic systems-collections of interacting, LLM-powered agents that execute complex, adaptive workflows using memory, tools, and dynamic planning. While enabling powerful new capabilities, these systems also introduce unique forms of uncertainty stemming from probabilistic reasoning, evolving memory states, and fluid execution paths. Traditional software observability and operations practices fall short in addressing these challenges. This paper introduces AgentOps: a comprehensive framework for observing, analyzing, optimizing, and automating operation of agentic AI systems. We identify distinct needs across four key roles-developers, testers, site reliability engineers (SREs), and business users-each of whom engages with the system at different points in its lifecycle. We present the AgentOps Automation Pipeline, a six-stage process encompassing behavior observation, metric collection, issue detection, root cause analysis, optimized recommendations, and runtime automation. Throughout, we emphasize the critical role of automation in managing uncertainty and enabling self-improving AI systems-not by eliminating uncertainty, but by taming it to ensure safe, adaptive, and effective operation.

Soumis à arXiv le 15 Jul. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.