When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors

Auteurs : Scott Emmons, Erik Jenner, David K. Elson, Rif A. Saurous, Senthooran Rajamanoharan, Heng Chen, Irhum Shafkat, Rohin Shah

Licence : CC BY 4.0

Résumé : While chain-of-thought (CoT) monitoring is an appealing AI safety defense, recent work on "unfaithfulness" has cast doubt on its reliability. These findings highlight an important failure mode, particularly when CoT acts as a post-hoc rationalization in applications like auditing for bias. However, for the distinct problem of runtime monitoring to prevent severe harm, we argue the key property is not faithfulness but monitorability. To this end, we introduce a conceptual framework distinguishing CoT-as-rationalization from CoT-as-computation. We expect that certain classes of severe harm will require complex, multi-step reasoning that necessitates CoT-as-computation. Replicating the experimental setups of prior work, we increase the difficulty of the bad behavior to enforce this necessity condition; this forces the model to expose its reasoning, making it monitorable. We then present methodology guidelines to stress-test CoT monitoring against deliberate evasion. Applying these guidelines, we find that models can learn to obscure their intentions, but only when given significant help, such as detailed human-written strategies or iterative optimization against the monitor. We conclude that, while not infallible, CoT monitoring offers a substantial layer of defense that requires active protection and continued stress-testing.

Soumis à arXiv le 07 Jul. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.