Agentic AI and Multiagentic: Are We Reinventing the Wheel?

Auteurs : V. Botti

Résumé : The terms Agentic AI and Multiagentic AI have recently gained popularity in discussions on generative artificial intelligence, often used to describe autonomous software agents and systems composed of such agents. However, the use of these terms confuses these buzzwords with well-established concepts in AI literature: intelligent agents and multi-agent systems. This article offers a critical analysis of this conceptual misuse. We review the theoretical origins of "agentic" in the social sciences (Bandura, 1986) and philosophical notions of intentionality (Dennett, 1971), and then summarise foundational works on intelligent agents and multi-agent systems by Wooldridge, Jennings and others. We examine classic agent architectures, from simple reactive agents to Belief-Desire-Intention (BDI) models, and highlight key properties (autonomy, reactivity, proactivity, social capability) that define agency in AI. We then discuss recent developments in large language models (LLMs) and agent platforms based on LLMs, including the emergence of LLM-powered AI agents and open-source multi-agent orchestration frameworks. We argue that the term AI Agentic is often used as a buzzword for what are essentially AI agents, and AI Multiagentic for what are multi-agent systems. This confusion overlooks decades of research in the field of autonomous agents and multi-agent systems. The article advocates for scientific and technological rigour and the use of established terminology from the state of the art in AI, incorporating the wealth of existing knowledge, including standards for multi-agent system platforms, communication languages and coordination and cooperation algorithms, agreement technologies (automated negotiation, argumentation, virtual organisations, trust, reputation, etc.), into the new and promising wave of LLM-based AI agents, so as not to end up reinventing the wheel.

Soumis à arXiv le 02 Jui. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.