CardioPatternFormer: Pattern-Guided Attention for Interpretable ECG Classification with Transformer Architecture

Auteurs : Berat Kutay Uğraş, Ömer Nezih Gerek, İbrahim Talha Saygı

Résumé : Accurate ECG interpretation is vital, yet complex cardiac data and "black-box" AI models limit clinical utility. Inspired by Transformer architectures' success in NLP for understanding sequential data, we frame ECG as the heart's unique "language" of temporal patterns. We present CardioPatternFormer, a novel Transformer-based model for interpretable ECG classification. It employs a sophisticated attention mechanism to precisely identify and classify diverse cardiac patterns, excelling at discerning subtle anomalies and distinguishing multiple co-occurring conditions. This pattern-guided attention provides clear insights by highlighting influential signal regions, effectively allowing the "heart to talk" through transparent interpretations. CardioPatternFormer demonstrates robust performance on challenging ECGs, including complex multi-pathology cases. Its interpretability via attention maps enables clinicians to understand the model's rationale, fostering trust and aiding informed diagnostic decisions. This work offers a powerful, transparent solution for advanced ECG analysis, paving the way for more reliable and clinically actionable AI in cardiology.

Soumis à arXiv le 26 Mai. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.