Sparsity is All You Need: Rethinking Biological Pathway-Informed Approaches in Deep Learning
Auteurs : Isabella Caranzano, Corrado Pancotti, Cesare Rollo, Flavio Sartori, Pietro Liò, Piero Fariselli, Tiziana Sanavia
Résumé : Biologically-informed neural networks typically leverage pathway annotations to enhance performance in biomedical applications. We hypothesized that the benefits of pathway integration does not arise from its biological relevance, but rather from the sparsity it introduces. We conducted a comprehensive analysis of all relevant pathway-based neural network models for predictive tasks, critically evaluating each study's contributions. From this review, we curated a subset of methods for which the source code was publicly available. The comparison of the biologically informed state-of-the-art deep learning models and their randomized counterparts showed that models based on randomized information performed equally well as biologically informed ones across different metrics and datasets. Notably, in 3 out of the 15 analyzed models, the randomized versions even outperformed their biologically informed counterparts. Moreover, pathway-informed models did not show any clear advantage in interpretability, as randomized models were still able to identify relevant disease biomarkers despite lacking explicit pathway information. Our findings suggest that pathway annotations may be too noisy or inadequately explored by current methods. Therefore, we propose a methodology that can be applied to different domains and can serve as a robust benchmark for systematically comparing novel pathway-informed models against their randomized counterparts. This approach enables researchers to rigorously determine whether observed performance improvements can be attributed to biological insights.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.