Learning to Learn with Quantum Optimization via Quantum Neural Networks

Auteurs : Kuan-Cheng Chen, Hiromichi Matsuyama, Wei-Hao Huang

arXiv: 2505.00561v1 - DOI (quant-ph)
Licence : CC BY 4.0

Résumé : Quantum Approximate Optimization Algorithms (QAOA) promise efficient solutions to classically intractable combinatorial optimization problems by harnessing shallow-depth quantum circuits. Yet, their performance and scalability often hinge on effective parameter optimization, which remains nontrivial due to rugged energy landscapes and hardware noise. In this work, we introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM) architectures, with QAOA. By training the QLSTM optimizer on smaller graph instances, our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence. Through comprehensive benchmarks on Max-Cut and Sherrington-Kirkpatrick model instances, we demonstrate that QLSTM-based optimizers converge faster and achieve higher approximation ratios compared to classical baselines, thereby offering a robust pathway toward scalable quantum optimization in the NISQ era.

Soumis à arXiv le 01 Mai. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.