Eigendecomposition Parameterization of Penalty Matrices for Enhanced Control Design: Aerospace Applications
Auteurs : Nicholas P. Nurre, Ehsan Taheri
Résumé : Modern control algorithms require tuning of square weight/penalty matrices appearing in quadratic functions/costs to improve performance and/or stability output. Due to simplicity in gain-tuning and enforcing positive-definiteness, diagonal penalty matrices are used extensively in control methods such as linear quadratic regulator (LQR), model predictive control, and Lyapunov-based control. In this paper, we propose an eigendecomposition approach to parameterize penalty matrices, allowing positive-definiteness with non-zero off-diagonal entries to be implicitly satisfied, which not only offers notable computational and implementation advantages, but broadens the class of achievable controls. We solve three control problems: 1) a variation of Zermelo's navigation problem, 2) minimum-energy spacecraft attitude control using both LQR and Lyapunov-based methods, and 3) minimum-fuel and minimum-time Lyapunov-based low-thrust trajectory design. Particle swarm optimization is used to optimize the decision variables, which will parameterize the penalty matrices. The results demonstrate improvements of up to 65% in the performance objective in the example problems utilizing the proposed method.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.