SD$^2$: Self-Distilled Sparse Drafters

Auteurs : Mike Lasby, Nish Sinnadurai, Valavan Manohararajah, Sean Lie, Vithursan Thangarasa

21 pages
Licence : CC BY 4.0

Résumé : Speculative decoding is a powerful technique for reducing the latency of Large Language Models (LLMs), offering a fault-tolerant framework that enables the use of highly compressed draft models. In this work, we introduce Self-Distilled Sparse Drafters (SD$^2$), a novel methodology that leverages self-data distillation and fine-grained weight sparsity to produce highly efficient and well-aligned draft models. SD$^2$ systematically enhances draft token acceptance rates while significantly reducing Multiply-Accumulate operations (MACs), even in the Universal Assisted Generation (UAG) setting, where draft and target models originate from different model families. On a Llama-3.1-70B target model, SD$^2$ provides a $\times$1.59 higher Mean Accepted Length (MAL) compared to layer-pruned draft models and reduces MACs by over 43.87% with a 8.36% reduction in MAL compared to a dense draft models. Our results highlight the potential of sparsity-aware fine-tuning and compression strategies to improve LLM inference efficiency while maintaining alignment with target models.

Soumis à arXiv le 10 Avr. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.