Beyond Code Generation: LLM-supported Exploration of the Program Design Space

Auteurs : J. D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, Björn Hartmann

17 pages; 4 figures; 1 table; to appear in CHI '25
Licence : CC BY-NC-ND 4.0

Résumé : In this work, we explore explicit Large Language Model (LLM)-powered support for the iterative design of computer programs. Program design, like other design activity, is characterized by navigating a space of alternative problem formulations and associated solutions in an iterative fashion. LLMs are potentially powerful tools in helping this exploration; however, by default, code-generation LLMs deliver code that represents a particular point solution. This obscures the larger space of possible alternatives, many of which might be preferable to the LLM's default interpretation and its generated code. We contribute an IDE that supports program design through generating and showing new ways to frame problems alongside alternative solutions, tracking design decisions, and identifying implicit decisions made by either the programmer or the LLM. In a user study, we find that with our IDE, users combine and parallelize design phases to explore a broader design space -- but also struggle to keep up with LLM-originated changes to code and other information overload. These findings suggest a core challenge for future IDEs that support program design through higher-level instructions given to LLM-based agents: carefully managing attention and deciding what information agents should surface to program designers and when.

Soumis à arXiv le 10 Mar. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.