When Radiation Meets Linux: Analyzing Soft Errors in Linux on COTS SoCs under Proton Irradiation
Auteurs : Saad Memon, Rafal Graczyk, Tomasz Rajkowski, Jan Swakon, Damian Wrobel, Sebastian Kusyk, Mike Papadakis
Résumé : The increasing use of Linux on commercial off-the-shelf (COTS) system-on-chip (SoC) in spaceborne computing inherits COTS susceptibility to radiation-induced failures like soft errors. Modern SoCs exacerbate this issue as aggressive transistor scaling reduces critical charge thresholds to induce soft errors and increases radiation effects within densely packed transistors, degrading overall reliability. Linux's monolithic architecture amplifies these risks, as tightly coupled kernel subsystems propagate errors to critical components (e.g., memory management), while limited error-correcting code (ECC) offers minimal mitigation. Furthermore, the lack of public soft error data from irradiation tests on COTS SoCs running Linux hinders reliability improvements. This study evaluates proton irradiation effects (20-50 MeV) on Linux across three COTS SoC architectures: Raspberry Pi Zero 2 W (40 nm CMOS, Cortex-A53), NXP i MX 8M Plus (14 nm FinFET, Cortex-A53), and OrangeCrab (40 nm FPGA, RISC-V). Irradiation results show the 14 nm FinFET NXP SoC achieved 2-3x longer Linux uptime without ECC memory versus both 40 nm CMOS counterparts, partially due to FinFET's reduced charge collection. Additionally, this work presents the first cross-architecture analysis of soft error-prone Linux kernel components in modern SoCs to develop targeted mitigations. The findings establish foundational data on Linux's soft error sensitivity in COTS SoCs, guiding mission readiness for space applications.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.