Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models

Auteurs : Bar Karov, Dor Zohar, Yam Marcovitz

Supplementary materials, including code, is available on our GitHub: https://github.com/emcie-co/parlant/tree/arqs-a-systematic-method-for-optimizing-instruction-following-in-llms

Résumé : We present Attentive Reasoning Queries (ARQs), a novel structured reasoning approach that significantly improves instruction-following in Large Language Models through domain-specialized reasoning blueprints. While LLMs demonstrate remarkable capabilities across diverse tasks, they often fail to maintain adherence to complex, use-case-specific instructions during multi-turn conversations, presenting challenges for business-critical applications. ARQs address this limitation by guiding LLMs through systematic reasoning steps with targeted queries that reinstate critical instructions and facilitate intermediate reasoning throughout the completion process. In extensive testing within Parlant, our framework for reliable customer-facing agents in which ARQs were born out of necessity, they achieved a 90.2% success rate across 87 test scenarios, outperforming both Chain-of-Thought reasoning (86.1%) and direct response generation (81.5%). ARQs showed particular strength in addressing persistent failure modes like guideline re-application and hallucination prevention. Our analysis also revealed that ARQs can potentially be more computationally efficient than free-form reasoning when carefully designed. These findings demonstrate that structured reasoning approaches provide effective mechanisms for controlling how LLMs process information and make decisions in complex scenarios.

Soumis à arXiv le 05 Mar. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.