Child vs. machine language learning: Can the logical structure of human language unleash LLMs?

Auteurs : Uli Sauerland, Celia Matthaei, Felix Salfner

ISCA/ITG Workshop on Diversity in Large Speech and Language Models
Licence : CC BY-NC-SA 4.0

Résumé : We argue that human language learning proceeds in a manner that is different in nature from current approaches to training LLMs, predicting a difference in learning biases. We then present evidence from German plural formation by LLMs that confirm our hypothesis that even very powerful implementations produce results that miss aspects of the logic inherent to language that humans have no problem with. We conclude that attention to the different structures of human language and artificial neural networks is likely to be an avenue to improve LLM performance.

Soumis à arXiv le 24 Fév. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.