Signal Collapse in One-Shot Pruning: When Sparse Models Fail to Distinguish Neural Representations

Auteurs : Dhananjay Saikumar, Blesson Varghese

Licence : CC BY 4.0

Résumé : Neural network pruning is essential for reducing model complexity to enable deployment on resource constrained hardware. While performance loss of pruned networks is often attributed to the removal of critical parameters, we identify signal collapse a reduction in activation variance across layers as the root cause. Existing one shot pruning methods focus on weight selection strategies and rely on computationally expensive second order approximations. In contrast, we demonstrate that mitigating signal collapse, rather than optimizing weight selection, is key to improving accuracy of pruned networks. We propose REFLOW that addresses signal collapse without updating trainable weights, revealing high quality sparse sub networks within the original parameter space. REFLOW enables magnitude pruning to achieve state of the art performance, restoring ResNeXt101 accuracy from under 4.1% to 78.9% on ImageNet with only 20% of the weights retained, surpassing state of the art approaches.

Soumis à arXiv le 18 Fév. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.