K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction

Auteurs : Tassallah Abdullahi, Ioanna Gemou, Nihal V. Nayak, Ghulam Murtaza, Stephen H. Bach, Carsten Eickhoff, Ritambhara Singh

Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (KDD '25), August 3--7, 2025, Toronto, ON, Canada

Résumé : Biomedical knowledge graphs (KGs) encode rich, structured information critical for drug discovery tasks, but extracting meaningful insights from large-scale KGs remains challenging due to their complex structure. Existing biomedical subgraph retrieval methods are tailored for graph neural networks (GNNs), limiting compatibility with other paradigms, including large language models (LLMs). We introduce K-Paths, a model-agnostic retrieval framework that extracts structured, diverse, and biologically meaningful multi-hop paths from dense biomedical KGs. These paths enable the prediction of unobserved drug-drug and drug-disease interactions, including those involving entities not seen during training, thus supporting inductive reasoning. K-Paths is training-free and employs a diversity-aware adaptation of Yen's algorithm to extract the K shortest loopless paths between entities in a query, prioritizing biologically relevant and relationally diverse connections. These paths serve as concise, interpretable reasoning chains that can be directly integrated with LLMs or GNNs to improve generalization, accuracy, and enable explainable inference. Experiments on benchmark datasets show that K-Paths improves zero-shot reasoning across state-of-the-art LLMs. For instance, Tx-Gemma 27B improves by 19.8 and 4.0 F1 points on interaction severity prediction and drug repurposing tasks, respectively. Llama 70B achieves gains of 8.5 and 6.2 points on the same tasks. K-Paths also boosts the training efficiency of EmerGNN, a state-of-the-art GNN, by reducing the KG size by 90% while maintaining predictive performance. Beyond efficiency, K-Paths bridges the gap between KGs and LLMs, enabling scalable and explainable LLM-augmented scientific discovery. We release our code and the retrieved paths as a benchmark for inductive reasoning.

Soumis à arXiv le 18 Fév. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.