A necessary condition for the guarantee of the superiorization method
Auteurs : Kay Barshad, Yair Censor, Walaa Moursi, Tyler Weames, Henry Wolkowicz
Résumé : We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM algorithm asymptotically converges to a feasible point whose objective function value is superior (meaning smaller or equal) to that of a feasible point reached by the corresponding unperturbed one (i.e., the exactly same feasibility-seeking algorithm that the SM algorithm employs.) This question is yet only partially answered in the literature. We present a condition under which an SM algorithm that uses negative gradient descent steps in its perturbations fails to yield such a superior outcome. The significance of the discovery of this negative condition is that it necessitates that the inverse of this condition will have to be assumed to hold in any future guarantee result for the SM. The condition is important for practitioners who use the SM because it is avoidable in experimental work with the SM, thus increasing the success rate of the method in real-world applications.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.