A Comprehensive Reanalysis of K2-18 b's JWST NIRISS+NIRSpec Transmission Spectrum
Auteurs : Stephen P. Schmidt, Ryan J. MacDonald, Shang-Min Tsai, Michael Radica, Le-Chris Wang, Eva-Maria Ahrer, Taylor J. Bell, Chloe Fisher, Daniel P. Thorngren, Nicholas Wogan, Erin M. May, Piero Ferrari, Katherine A. Bennett, Zafar Rustamkulov, Mercedes López-Morales, David K. Sing
Résumé : Sub-Neptunes are the most common type of planet in our galaxy. Interior structure models suggest that the coldest sub-Neptunes could host liquid water oceans underneath their hydrogen envelopes - sometimes called 'hycean' planets. JWST transmission spectra of the $\sim$ 250 K sub-Neptune K2-18 b were recently used to report detections of CH$_4$ and CO$_2$, alongside weaker evidence of (CH$_3$)$_2$S (dimethyl sulfide, or DMS). Atmospheric CO$_2$ was interpreted as evidence for a liquid water ocean, while DMS was highlighted as a potential biomarker. However, these notable claims were derived using a single data reduction and retrieval modeling framework, which did not allow for standard robustness tests. Here we present a comprehensive reanalysis of K2-18 b's JWST NIRISS SOSS and NIRSpec G395H transmission spectra, including the first analysis of the second-order NIRISS SOSS data. We incorporate multiple well-tested data reduction pipelines and retrieval codes, spanning 60 different data treatments and over 250 atmospheric retrievals. We confirm the detection of CH$_4$ ($\approx$ 4$\sigma$), with a volume mixing ratio of log CH$_4$ = $-1.15^{+0.40}_{-0.52}$, but we find no statistically significant or reliable evidence for CO$_2$ or DMS. Finally, we quantify the observed atmospheric composition using photochemical-climate and interior models, demonstrating that our revised composition of K2-18 b can be explained by an oxygen-poor mini-Neptune without requiring a liquid water surface or life.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.