The effect of fine-tuning on language model toxicity
Auteurs : Will Hawkins, Brent Mittelstadt, Chris Russell
Résumé : Fine-tuning language models has become increasingly popular following the proliferation of open models and improvements in cost-effective parameter efficient fine-tuning. However, fine-tuning can influence model properties such as safety. We assess how fine-tuning can impact different open models' propensity to output toxic content. We assess the impacts of fine-tuning Gemma, Llama, and Phi models on toxicity through three experiments. We compare how toxicity is reduced by model developers during instruction-tuning. We show that small amounts of parameter-efficient fine-tuning on developer-tuned models via low-rank adaptation on a non-adversarial dataset can significantly alter these results across models. Finally, we highlight the impact of this in the wild, demonstrating how toxicity rates of models fine-tuned by community contributors can deviate in hard-to-predict ways.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.