Customized FinGPT Search Agents Using Foundation Models
Auteurs : Felix Tian, Ajay Byadgi, Daniel Kim, Daochen Zha, Matt White, Kairong Xiao, Xiao-Yang Liu Yanglet
Résumé : Current large language models (LLMs) have proven useful for analyzing financial data, but most existing models, such as BloombergGPT and FinGPT, lack customization for specific user needs. In this paper, we address this gap by developing FinGPT Search Agents tailored for two types of users: individuals and institutions. For individuals, we leverage Retrieval-Augmented Generation (RAG) to integrate local documents and user-specified data sources. For institutions, we employ dynamic vector databases and fine-tune models on proprietary data. There are several key issues to address, including data privacy, the time-sensitive nature of financial information, and the need for fast responses. Experiments show that FinGPT agents outperform existing models in accuracy, relevance, and response time, making them practical for real-world applications.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.