Personal Intelligence System UniLM: Hybrid On-Device Small Language Model and Server-Based Large Language Model for Malay Nusantara
Auteurs : Azree Nazri, Olalekan Agbolade, Faisal Aziz
Résumé : In contexts with limited computational and data resources, high-resource language models often prove inadequate, particularly when addressing the specific needs of Malay languages. This paper introduces a Personal Intelligence System designed to efficiently integrate both on-device and server-based models. The system incorporates SLiM-34M for on-device processing, optimized for low memory and power usage, and MANYAK-1.3B for server-based tasks, allowing for scalable, high-performance language processing. The models achieve significant results across various tasks, such as machine translation, question-answering, and translate IndoMMLU. Particularly noteworthy is SLiM-34M's ability to achieve a high improvement in accuracy compared to other LLMs while using 2 times fewer pre-training tokens. This work challenges the prevailing assumption that large-scale computational resources are necessary to build effective language models, contributing to the development of resource-efficient models for the Malay language with the unique orchestration between SLiM-34M and MANYAK-1.3B.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.