Comparative Analysis of Novel View Synthesis and Photogrammetry for 3D Forest Stand Reconstruction and extraction of individual tree parameters

Auteurs : Guoji Tian, Chongcheng Chen, Hongyu Huang

31page,15figures

Résumé : Accurate and efficient 3D reconstruction of trees is crucial for forest resource assessments and management. Close-Range Photogrammetry (CRP) is commonly used for reconstructing forest scenes but faces challenges like low efficiency and poor quality. Recently, Novel View Synthesis (NVS) technologies, including Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have shown promise for 3D plant reconstruction with limited images. However, existing research mainly focuses on small plants in orchards or individual trees, leaving uncertainty regarding their application in larger, complex forest stands. In this study, we collected sequential images of forest plots with varying complexity and performed dense reconstruction using NeRF and 3DGS. The resulting point clouds were compared with those from photogrammetry and laser scanning. Results indicate that NVS methods significantly enhance reconstruction efficiency. Photogrammetry struggles with complex stands, leading to point clouds with excessive canopy noise and incorrectly reconstructed trees, such as duplicated trunks. NeRF, while better for canopy regions, may produce errors in ground areas with limited views. The 3DGS method generates sparser point clouds, particularly in trunk areas, affecting diameter at breast height (DBH) accuracy. All three methods can extract tree height information, with NeRF yielding the highest accuracy; however, photogrammetry remains superior for DBH accuracy. These findings suggest that NVS methods have significant potential for 3D reconstruction of forest stands, offering valuable support for complex forest resource inventory and visualization tasks.

Soumis à arXiv le 08 Oct. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.