From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection

Auteurs : Xinlei Wang, Maike Feng, Jing Qiu, Jinjin Gu, Junhua Zhao

This paper has been accepted for NeurIPS 2024

Résumé : This paper introduces a novel approach to enhance time series forecasting using Large Language Models (LLMs) and Generative Agents. With language as a medium, our method adaptively integrates various social events into forecasting models, aligning news content with time series fluctuations for enriched insights. Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning and reflection to evaluate predictions. This enables our model to analyze complex events, such as unexpected incidents and shifts in social behavior, and continuously refine the selection logic of news and the robustness of the agent's output. By compiling selected news with time series data, we fine-tune the LLaMa2 pre-trained model. The results demonstrate significant improvements in forecasting accuracy and suggest a potential paradigm shift in time series forecasting by effectively harnessing unstructured news data.

Soumis à arXiv le 26 Sep. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.