Schrodinger's Memory: Large Language Models

Auteurs : Wei Wang, Qing Li

Licence : CC BY 4.0

Résumé : Memory is the foundation of all human activities; without memory, it would be nearly impossible for people to perform any task in daily life. With the development of Large Language Models (LLMs), their language capabilities are becoming increasingly comparable to those of humans. But do LLMs have memory? Based on current performance, LLMs do appear to exhibit memory. So, what is the underlying mechanism of this memory? Previous research has lacked a deep exploration of LLMs' memory capabilities and the underlying theory. In this paper, we use Universal Approximation Theorem (UAT) to explain the memory mechanism in LLMs. We also conduct experiments to verify the memory capabilities of various LLMs, proposing a new method to assess their abilities based on these memory ability. We argue that LLM memory operates like Schr\"odinger's memory, meaning that it only becomes observable when a specific memory is queried. We can only determine if the model retains a memory based on its output in response to the query; otherwise, it remains indeterminate. Finally, we expand on this concept by comparing the memory capabilities of the human brain and LLMs, highlighting the similarities and differences in their operational mechanisms.

Soumis à arXiv le 16 Sep. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.