Network reconstruction may not mean dynamics prediction
Auteurs : Zhendong Yu, Haiping Huang
Résumé : With an increasing amount of observations on the dynamics of many complex systems, it is required to reveal the underlying mechanisms behind these complex dynamics, which is fundamentally important in many scientific fields such as climate, financial, ecological, and neural systems. The underlying mechanisms are commonly encoded into network structures, e.g., capturing how constituents interact with each other to produce emergent behavior. Here, we address whether a good network reconstruction suggests a good dynamics prediction. The answer is quite dependent on the nature of the supplied (observed) dynamics sequences measured on the complex system. When the dynamics are not chaotic, network reconstruction implies dynamics prediction. In contrast, even if a network can be well reconstructed from the chaotic time series (chaos means that many unstable dynamics states coexist), the prediction of the future dynamics can become impossible as at some future point the prediction error will be amplified. This is explained by using dynamical mean-field theory on a toy model of random recurrent neural networks.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.