The First Billion Years in Seconds: An Effective Model for the 21-cm Signal with Population III Stars
Auteurs : Hector Afonso G. Cruz, Julian B. Munoz, Nashwan Sabti, Marc Kamionkowski
Résumé : Observations of the 21-cm signal are opening a window to the cosmic-dawn epoch, when the first stars formed. These observations are usually interpreted with semi-numerical or hydrodynamical simulations, which are often computationally intensive and inflexible to changes in cosmological or astrophysical effects. Here, we present an effective, fully analytic model for the impact of the first stars on the 21-cm signal, using the modular code Zeus21. Zeus21 employs an analytic prescription of the star formation rate density (SFRD) to recover the fully nonlinear and nonlocal correlations of radiative fields that determine the 21-cm signal. We introduce the earliest Population III (Pop III) stars residing in low-mass molecular-cooling galaxies in Zeus21, with distinct spectra from later Pop II stars. We also self-consistently model feedback in the form of $H_2$-dissociating Lyman-Werner (LW) radiation, as well as dark matter-baryon relative velocities, both of which suppress star formation in the lowest-mass halos. LW feedback produces a scale-dependence on the SFRD fluctuations, due to the long mean free path of LW photons. Relative velocities give rise to "wiggles" in the spatial distribution of the 21-cm signal; we present an improved calculation of the shape of these velocity-induced acoustic oscillations, showing they remain a standard ruler at cosmic dawn. Our improved version of Zeus21 predicts the 21-cm global signal and power spectra in agreement with simulations at the $\sim 10\%$ level, yet is at least three orders of magnitude faster. This public code represents a step towards efficient and flexible parameter inference at cosmic dawn, allowing us to predict the first billion years of the universe in mere seconds.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.