STrack: A Reliable Multipath Transport for AI/ML Clusters
Auteurs : Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin Jain, Raghava Sivaramu, Francis Matus
Résumé : Emerging artificial intelligence (AI) and machine learning (ML) workloads present new challenges of managing the collective communication used in distributed training across hundreds or even thousands of GPUs. This paper presents STrack, a novel hardware-offloaded reliable transport protocol aimed at improving the performance of AI /ML workloads by rethinking key aspects of the transport layer. STrack optimizes congestion control and load balancing in tandem: it incorporates an adaptive load balancing algorithm leveraging ECN, while adopts RTT as multi-bit congestion indicators for precise congestion window adjustment. Additionally, STrack facilitates out-of-order delivery, selective retransmission, and swift loss recovery in hardware for multipath environment. The extensive simulation comparing STrack and RoCEv2 demonstrates that STrack outperforms RoCEv2 by up to 6X with synthetic workloads and by 27.4% with collective workloads, even with the optimized RoCEv2 system setup.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.